/** Functions for performing calculations to arbitrary precision. A good reference is Ronald W. Potter, "Arbitrary Precision Calculation of Selected Higher Functions." References to "Potter" and equation numbers are from this book. https://www.lulu.com/shop/ronald-w-potter/arbitrary-precision-calculation-of-selected-higher-functions/paperback/product-1nwy7p7q.html?q=potter+functions&page=1&pageSize=4 Also see Henrik Vestermark's excellent site which is a treasure trove: http://www.hvks.com/ especially http://www.hvks.com/Numerical/papers.html */ use pi2.frink /** This is a new arbitrary precision exponentiation function with a binary splitting implementation. It is orders of magnitude faster than the previous implementation. http://www.hvks.com/ especially http://www.hvks.com/Numerical/papers.html http://www.hvks.com/Numerical/arbitrary_precision.html and specifically outlined in the paper: http://www.hvks.com/Numerical/Downloads/HVE%20Fast%20Exp()%20calculation%20for%20arbitrary%20precision.pdf */ arbitraryExp[x, digits=getPrecision[], debug=false] := { if x == 0 return 1 origPrec = getPrecision[] try { setPrecision[18] prec = digits + 2 + ceil[log[digits]] c1 = 1 c2 = 2 v = x xp = 1 // e^-x == 1/e^x if realSignum[v] == -1 v = negate[v] // Automatically calculate optimal reduction factor as a power of two r = 8 * ceil[ln[2] * ln[prec]] rexp = floor[log[v,2]] r = r + rexp + 1 // r += v.exponent() + 1 r = max[0, r] // Adjust the precision // println["rexp is $rexp"] prec = prec + floor[log[digits]] * r // println["Final precision is $prec"] // Calculate needed Taylor terms k = xstirlingApprox[prec, -(r-rexp)] if k < 2 k = 2 // Minimum 2 terms otherwise it can't split setPrecision[prec+1] // println["r is $r"] // println["v was $v"] v = v * 2^-r //v.adjustExponent(-r); // println["v is now $v"] [xp, p, q] = binarySplittingExp[v, 1, 0, k] // println["Out of binary splitting."] // println["xp=$xp"] // println["p=$p"] // println["q=$q"] // Adjust and calculate exp[x] pp = q p = p + pp p = p / q p = 1. p // println["Before adjust, p = $p"] // Reverse argument reduction // Brent enhancement avoids loss of significant digits when x is small. if r > 0 { p = p - 1 while r > 0 { p = p * (p+2) r = r - 1 } p = p + 1 } if realSignum[x] == -1 p = 1/p setPrecision[digits] return 1. p } finally { setPrecision[origPrec] } } /** Performs a step of binarySplitting and returns [xp, p, q] This is based on Henrik Vestermark's algorithm, http://www.hvks.com/ especially http://www.hvks.com/Numerical/papers.html http://www.hvks.com/Numerical/arbitrary_precision.html and specifically outlined in the paper: http://www.hvks.com/Numerical/Downloads/HVE%20Fast%20Exp()%20calculation%20for%20arbitrary%20precision.pdf */ binarySplittingExp[x, xp, a, b] := { // println["In binarySplittingExp a = $a b=$b"] diff = b-a if diff == 1 { p = xp * x return [p, p, b] } if diff == 2 { xp = xp * x p = (x+b) xp xp = xp * x q = b (b-1) return [xp, p, q] } mid = (a+b) div 2 [xp, p, q] = binarySplittingExp[x, xp, a, mid] // Interval a...mid [xp, pp, qq] = binarySplittingExp[x, xp, mid, b] // Interval a...mid return [xp, p*qq + pp, q * qq] } /** Stirling approximation helper function for calculating e^x. */ xstirlingApprox[digits, xexpo] := { // println["xexpo is $xexpo"] test = (digits + 1) * ln[10] // x^n/k!<10^-p, where p is the precision of the number // x^n~2^x’exponent // Stirling approximation of k!~Sqrt(2*pi*k)(k/e)^k. // Taking ln on both sides you get: // // -k*log(2^xexpo) + k*(log((k)-1)+0.5*log(2*pi*m)=test=> // -k*xexpo*log(2) + k*(log((k)-1)+0.5*log(2*pi*m)=test // Use the Newton method to find in less than 4-5 iteration xold = 5 xnew = 0 NEWTONLOOP: while true { f = -xold * ln[2] * xexpo + xold * (ln[xold]-1) + 0.5 ln[2 pi xold] // println["f is $f"] f1 = 0.5 / xold + ln[xold] - xexpo * ln[2] xnew = xold - (f - test) / f1 if ceil[xnew] == ceil[xold] break NEWTONLOOP xold = xnew } // println["xStirlingApprox returning " + ceil[xnew]] return ceil[xnew] } /** Natural log to arbitrary precision. This uses a cubic convergence algorithm (that is, the number of correct digits in the result approximately triple with each iteration) with adaptive precision using equation 3.47 in Potter. It is significantly faster than the previous algorithm that did not have adaptive precision and used a quadratic Newton's method algorithm. */ arbitraryLn[x, digits=getPrecision[], debug=false] := { if debug println["in arbitraryLn[$x]"] if x <= 0 return "Error: Arbitrary logs of negative numbers not yet implemented." if x == 1 return 0 extraDigits = 5 + digitLength[x] origPrec = getPrecision[] try { setPrecision[10] eps = 10.^-(digits+1) // A good initial estimate is needed. if (x > 0.999) and (x < 1.001) { // Use Taylor series around 1 because Math.log returns such a bad // value. y = arbitraryLnTaylor[x, digits*2, debug] prec = 15 } else { if (x < 10^290) and (x > 10^-308) // If within the range of a double { y = ln[x] prec = 15 } else // TODO: Store ln[2] somewhere. { y = approxLog2[x] * ln[2] prec = 1 // Is this reasonable? approxLog2 has a lot of latitude. } } if debug println["Epsilon is $eps"] // Use Newton's method do { setPrecision[max[prec,15]+extraDigits] y2 = y if debug println["About to do arbitraryExp[" + (-y) + "]"] le = arbitraryExp[-y, max[prec,15]+extraDigits, debug] if debug println["Out of arbitraryExp, value is $le"] zn = 1 - x le y = y - zn(1 + zn/2) if debug println["prec is $prec, y is $y"] prec = prec * 3 if (prec > digits + extraDigits) prec = digits + extraDigits } while (prec < digits) or (abs[y2-y] > eps) setPrecision[digits] retval = 1. y if debug println["arbitraryLn about to return $retval"] return retval } finally setPrecision[origPrec] } /** This is an arbitrary-precision natural logarithm that uses a Taylor series for arctanh. It is theoretically valid for any real number x>0 but should probably only be used closely around x=1 where the binary splitting version does not converge well. This is probably because the IEEE-754 unit returns a poor value for ln(x) around x=1?! For example, log(1.000001) gives, with IEEE_754, 9.999994999180668e-07 whereas the actual value is 9.99999500000333333083333533333e-07 The expression is: ln[x] = 2 arctanh(r) = 2 (r + 1/3 r^3 + 1/5 r^5 + 1/7 r^7 ...) where r = (x-1)/(x+1) See: http://www.hvks.com/Numerical/Downloads/HVE%20Fast%20Log()%20calculation%20for%20arbitrary%20precision.pdf */ arbitraryLnTaylor[x, digits=getPrecision[], debug=false] := { terms = 10 origPrec = getPrecision[] workingPrecision = digits + 2 try { setPrecision[workingPrecision] z = (x-1)/(x+1) z2 = z*z term = z sum = z denom = 3 for i = 1 to terms { term = term * z2 sum = sum + term/denom denom = denom+2 } setPrecision[digits] return 2. sum } finally { setPrecision[origPrec] } } // Arbitrary-precision power x^p // This uses the relationship that x^p = exp[p * ln[x]] arbitraryPow[x, p, digits = getPrecision[], debug=false ] := { // TODO: Make this work much faster for integer and rational powers. prec = getPrecision[] try { workingdigits = digits + 2 if digits <= 12 workingdigits = digits + 4 setPrecision[workingdigits] ret = arbitraryExp[p * arbitraryLn[x, workingdigits, debug], workingdigits, debug] setPrecision[digits] return 1. * ret } finally setPrecision[prec] } // Arbitrary log to the base 10. arbitraryLog[x, digits=getPrecision[], debug=false] := { origPrec = getPrecision[] try { setPrecision[digits+2] // TODO: Store ln[10] somewhere. retval = arbitraryLn[x, digits+2,debug] / arbitraryLn[10, digits+2, debug] setPrecision[digits] return 1. retval } finally setPrecision[origPrec] } // Arbitrary log to the specified base. arbitraryLogBase[x, base, digits=getPrecision[], debug=false] := { origPrec = getPrecision[] try { setPrecision[digits+2] retval = arbitraryLn[x, digits+2,debug] / arbitraryLn[base, digits+2, debug] setPrecision[digits] return 1. retval } finally setPrecision[origPrec] } // This method computes sine of a number to an arbitrary precision. // This method is actually a dispatcher function which conditions the values // and tries to dispatch to the appropriate method which will be most likely // to converge rapidly. arbitrarySin[x, digits=getPrecision[], debug=false] := { origPrec = getPrecision[] try { // If x is something like 10^50, we actually need to work with // 50+digits at this point to get a meaningful result. extradigits = max[0, ceil[approxLog2[abs[x]]/ 3.219]] // Approx. log 10 if debug println["Extradigits is " + extradigits] setPrecision[digits+extradigits+4] if debug println["Dividing by pi to " + (digits + extradigits + 4) + " digits"] pi = Pi.getPi[digits+extradigits+4] // Break up one period of a sinewave into octants, each with width pi/4 octant = floor[(x / (pi/4)) mod 8] // Adjust x into [0, 2 pi] x = x mod (2 pi) if debug println["Octant is $octant"] if debug println["Adjusted value is $x"] if octant == 0 val = arbitrarySinTaylor[x, digits] else if octant == 1 val = arbitraryCosTaylor[-(x - pi/2), digits] else if octant == 2 val = arbitraryCosTaylor[x - pi/2, digits] else if octant == 3 or octant == 4 val = -arbitrarySinTaylor[x-pi, digits] else if octant == 5 val = -arbitraryCosTaylor[-(x - 3/2 pi), digits] else if octant == 6 val = -arbitraryCosTaylor[x - 3/2 pi, digits] else val = arbitrarySinTaylor[x - 2 pi, digits] setPrecision[digits] return 1. * val } finally setPrecision[origPrec] } /* This method computes cosine of a number to an arbitrary precision. This method actually just calls arbitrarySin[x + pi/2] */ arbitraryCos[x, digits=getPrecision[]] := { origPrec = getPrecision[] // If x is something like 10^50, we actually need to work with // 50+digits at this point to get a meaningful result. extradigits = max[0, ceil[approxLog2[abs[x]]/ 3.219]] // Approx. log 10 if debug println["Extradigits is " + extradigits] if debug println["Dividing by pi to " + (digits + extradigits + 4) + " digits"] pi = Pi.getPi[digits+extradigits+4] try { setPrecision[digits+extradigits+4] pi = Pi.getPi[digits+extradigits+4] arg = x+pi/2 return arbitrarySin[arg, digits] } finally setPrecision[origPrec] } // Arbitrary-precision sine arbitrarySinTaylor[x, digits=getPrecision[], returnInterval = false] := { origPrec = getPrecision[] eps = 10.^-(digits+3) terms = new array try { setPrecision[digits+5] x = x / radian // Factor out radians if we use them pi = Pi.getPi[digits+5] x = x mod (2 pi) if x > pi x = x - 2 pi num = x sum = x term = 3 denom = 1 factor = -x*x terms.push[sum] do { prevSum = sum num = num * factor denom = denom * (term-1) * term part = num/denom sum = sum + part term = term + 2 terms.push[part] } while prevSum != sum // println["terms for sin is $term"] sum = sum[reverse[terms]] setPrecision[digits] return 1. * sum } finally setPrecision[origPrec] } // Cosine for arbitrary digits. We could write this in terms of the sine // function (cos[x] = sin[x + pi/2]) but it's faster and more accurate // (especially around pi/2) to write it as the Taylor series expansion. arbitraryCosTaylor[x, digits=getPrecision[]] := { origPrec = getPrecision[] eps = 10.^-(digits+4) terms = new array try { setPrecision[digits+4] x = x / radian // Factor out radians if we use them pi = Pi.getPi[digits+4] x = x mod (2 pi) // println["Effective x is $x"] num = 1 sum = 1 term = 2 denom = 1 factor = -x*x terms.push[sum] do { prevSum = sum num = num * factor denom = denom * (term-1) * term part = num/denom sum = sum + part // println["$term $part $sum"] term = term + 2 terms.push[part] } while prevSum != sum // println["terms for cos is $term"] sum = sum[reverse[terms]] setPrecision[digits] return 1. * sum } finally setPrecision[origPrec] } // Tangent for arbitrary digits. This is written in terms of // sin[x]/cos[x] but it seems to behave badly around pi/2 where cos[x] goes to // zero. // // TODO: Make this a series expansion with the tangent numbers. This might // be more efficient. // See: http://mathworld.wolfram.com/TangentNumber.html // also TangentNumbers.frink // which calculate these numbers directly and efficiently. // // We could also try using Newton's method to invert arctan[x] which // has a simple series expansion, // arctan[x] = sum[(-1)^k x^(2k+1) / (2k + 1), {k, 0, infinity}] // but this only converges for abs[x] <= 1, x != +/- i // // See: // Fast Algorithms for High-Precision Computation of Elementary Functions, // Richard P. Brent, 2006 // https://pdfs.semanticscholar.org/bf5a/ce09214f071251bfae3a09a91100e77d7ff6.pdf arbitraryTan[x, digits=getPrecision[], debug=false] := { // If x is something like 10^50, we actually need to work with // 50+digits at this point to get a meaningful result. extradigits = max[0, ceil[approxLog2[abs[x]]/ 3.219]] // Approx. log 10 if debug println["Extradigits is " + extradigits] origPrec = getPrecision[] try { setPrecision[digits+extradigits+4] retval = arbitrarySin[x, digits+4] / arbitraryCos[x, digits+4] setPrecision[digits] return 1. * retval } finally setPrecision[origPrec] } // Polylogarithm. See: // https://en.wikipedia.org/wiki/Polylogarithm polylog[s, z, digits = getPrecision[]] := { // if x <= 0 // return "Error: Arbitrary logs of negative numbers not yet implemented." origPrec = getPrecision[] try { setPrecision[digits+3] eps = 10.^-(digits+1) sum = 1. * z term = 0 k = 2 do { term = z^k / k^s sum = sum + term k = k + 1 // println[sum] } while abs[term] > eps setPrecision[digits] retval = 1. sum return retval } finally setPrecision[origPrec] } // Binary logarithm (that is, logarithm to base 2.) binaryLog[x, digits = getPrecision[]] := { origPrec = getPrecision[] try { setPrecision[digits+3] x = 1. x y = 0 b = .5 while x < 1 { x = 2 x y = y - 1 } while x >= 2 { x = x / 2 y = y + 1 } setPrecision[15] epsilon = y * 10.^-(digits+3) setPrecision[digits+3] println["Epsilon is $epsilon"] do { x = x^2 if x >= 2 { x = x/2 y = y + b } b = b/2 //println["$y $x $b"] } while b > epsilon setPrecision[digits] return 1. * y } finally setPrecision[origPrec] } // See http://en.literateprograms.org/Arbitrary-precision_elementary_mathematical_functions_(Python) /** This is a somewhat naive implementation of e^x which has a Maclaurin series of exp[x] = 1 + x + x^2/2! + x^3/3! + ... It is now done much faster with a binary splitting implementation. See BinarySplittingExp.frink for another sample. */ arbitraryExpOld[x, digits=getPrecision[], debug=false] := { if debug println["in arbitraryExpOld[$x, $digits]"] origPrec = getPrecision[] setPrecision[digits+3] var s try { if x < 0 { s = 1.0 / arbitraryExpOld[abs[x],digits,debug] } else { xpower = 1. ns = 0. s = 1 n = 0. factorial = 1. while s != ns { s = ns term = xpower / factorial if debug println["term is $term"] ns = s + term xpower = xpower * x n = n + 1. factorial = factorial * n } if debug println["s is $s"] } setPrecision[digits] retval = 1.0 s if debug println["arbitraryExpOld[$x, $digits] returning $retval"] return retval } finally setPrecision[origPrec] } /** This calculates the gamma function. The gamma function is closely related to the factorial, but generalizes to the real numbers. At the integers, gamma[x] = (x-1)! or, conversely, x! = gamma[x+1] This algorithm is based on Henrik Vestermark's algorithm for calculating using integration by parts. See: http://www.hvks.com/Numerical/papers.html and specifically: http://www.hvks.com/Numerical/Downloads/HVE%20Fast%20Gamma,%20Beta,%20Error,%20Zeta%20function%20for%20arbitrary%20precision.pdf */ gamma[x, digits=getPrecision[], debug=false] := { precision = digits + digitLength[x] + 8 if isInteger[x] if x <= 0 { println["Error: gamma function is not defined for negative integers."] return undef } else return (x-1)! // TODO: Implement half-integer case here origPrec = getPrecision[] try { setPrecision[precision] fpip = x div 1 // Called fp2 in paper, integer part fp = x mod 1 // Called fp in paper, fractional part if debug { println["fpip is $fpip"] println["fp is $fp"] } if (x < 0) { fpip = fpip - 1 // if T(x<0) then use Euler reflection formula T(x)=pi/(T(1-x)*sin(pi*x)) fp = gamma[1 - x] pi = Pi.getPi[precision] fp = fp * arbitrarySin[pi * x, precision] fp = pi / fp setPrecision[digits] return 1. * fp } // Use the Integration by parts method // First integral as the sum of the Taylor series exp(-u) near u==0 // integral[0,M]u^(x-1)*exp(-u)du=M^x*sum([n=0,M](-1)^n*M^n/(n+x)*n1) // Step 1 choose M>(P+ln(P))*ln(10). Due to the alternating sign working // precision needs to be 2P M = ceil[(precision + ln[precision]) * ln[10]] if debug println["M is $M"] // Step 2 // calculate how many shifts is needed to bring x within [1-2]. shifts = 0 if x < 1 shifts = 1 // x<1 set shifts to 1; else if x > 2 shifts = -floor[fpip] + 1 fp = x + shifts // Step 3 calculate the series sum nmax = ceil[precision * ln[10] / 0.2785] powprec = ceil[nmax + log[M]] fp2 = 1 fp3 = 1 sum = 0 for n = 0 to nmax { fp2 = fp2 * (fp + n) sum = sum + (fp3 / fp2) fp3 = fp3 * M } // Step 4 finalize the gamma value sum = sum * arbitraryExp[-M, precision] fp = arbitraryPow[M, fp, precision] * sum if debug println["shifts is $shifts"] // Step 5 readjust for any shifted T[x] if shifts < 0 { fp2 = 1 while shifts < 0 { fp2 = fp2 * (x + shifts) shifts = shifts + 1 } fp = fp * fp2 } else { if shifts > 0 { // Max 1 shift fp2 = x fp = fp / fp2 } } setPrecision[digits] return 1. * fp } finally { setPrecision[origPrec] } } /** The beta function is closely tied to Gamma. It is defined as: beta[a, b] = gamma[a] gamma[b] / gamma[a+b] */ beta[a, b, digits=getPrecision[], debug=false] := { origPrecision = getPrecision[] try { workingPrec = digits + 4 setPrecision[workingPrec] beta = gamma[a, workingPrec, debug] gamma[b, workingPrec, debug] / gamma[a+b, workingPrec, debug] setPrecision[digits] return 1. * beta } finally setPrecision[origPrecision] } /** Calculates the error function erf, which is widely used in statistics. For calculating the error function erf to arbitrary precision, see: See: http://www.hvks.com/Numerical/papers.html and specifically: http://www.hvks.com/Numerical/Downloads/HVE%20Fast%20Gamma,%20Beta,%20Error,%20Zeta%20function%20for%20arbitrary%20precision.pdf Which references: The functions erf and erfc computed with arbitrary precision and explicit error bounds, Journal: Information and Computation, : 2012, ISSN: 0890-5401 https://core.ac.uk/display/82728431 */ arbitraryErf[x, digits=getPrecision[], debug=false] := { if x == 0 return 0 ld = log[digits] workprec = digits + 20 + digitLength[x] + ceil[ld] bitprecision = ceil[(digits + ld) * log[10,2]] extra = 9 origPrec = getPrecision[] try { setPrecision[workprec] xsq = x*x // x^2 y = 2 xsq // 2 x^2 yexpo = floor[log[y,2]] eps = bitprecision + extra // Compute N using low-precision arithmetic. // N/(ex^2)*log2(N/(ex^2)) >= a, where // a=(targetprecision+3+max(0,x.exponent())-x^2*log2(e))/)ex^2) e1xsq = e * xsq xexpo = floor[log[abs[x],2]] a = (eps + max[0, xexpo] - xsq * log[e,2]) / e1xsq if a >= 2.0 nmax = ceil[2 a e1xsq / log[a,2]] else if (a >= 0) // [0..2] nmax = ceil[e1xsq * 2.0^(1/4) * 2.0^(a/2)] else { // a<0 nmax = ceil[e1xsq * 2.0^a] if nmax < 2 xsq nmax = ceil[2 xsq] } eps = negate[eps] eps = eps + min[0, xexpo- 1] // Compute L. Optimal with L~sqrt(N) lmax = ceil[sqrt[nmax]] ypl = y^lmax S = new array[[lmax+1], 0] fpacc = 2 abs[x] * arbitraryExp[-xsq] / sqrt[Pi.getPi[workprec], workprec] if fpacc == 0 return x.realSignum[] // Return either +1 or -1 // Need to do a least kmin loops before we can consider exiting the loop kmin = max[y, 0.9 nmax] i=0 KLOOP: for k=1 to nmax { S@i = S@i + fpacc i = i + 1 if i == lmax { i = 0 fpacc = fpacc * ypl } fpacc = fpacc / (2 k + 1) if ( k >= kmin and i==0 and (floor[log[fpacc,2]] < eps - yexpo * i)) break KLOOP } res = S@(lmax-1) for i = lmax-2 to 0 step -1 res = res y + S@i if x < 0 res = negate[res] setPrecision[digits] return 1. res } finally { setPrecision[origPrec] } } /** Arbitrary-precision erfc function. erfc[x] = 1 - erf[x] but for large x erf[x] may be very close to 1 and lose precision. It should be much faster to call this function for large x. Note that this function is very limited in the number of correct digits it can produce for smaller x. For example, at erfc[5], it can only produce 9 correct digits. It will print an error and return with an undef value if too many digits are requested. The approximate number of achievable decimal digits is: exp[2 ln[x]] log[2, 10] THINK ABOUT: Add a dispatcher function to only call this for larger values of x. THINK ABOUT: If we can't produce enough digits, call 1-arbitraryErf[x] instead. Look at how statistics.frink implements its dispatchers. This is implemented from eq. 3 and algorithm 5 of: The functions erf and erfc computed with arbitrary precision and explicit error bounds, Journal: Information and Computation, : 2012, ISSN: 0890-5401 https://core.ac.uk/display/82728431 In his paper http://www.hvks.com/Numerical/Downloads/HVE%20Fast%20Gamma,%20Beta,%20Error,%20Zeta%20function%20for%20arbitrary%20precision.pdf Vestermark recommends just using 1-arbitraryErf[x] instead. */ arbitraryErfc[x, digits=getPrecision[], debug=false] := { if x == 0 return 0 origPrec = getPrecision[] if x < 0 { try { setPrecision[digits] return 2-arbitraryErfc[-x, digits, debug] } finally setPrecision[origPrec] } // Recipe 5 tprime = ceil[digits log[10,2]] // tprime is *bits* of precision, not digits if debug println["tprime is $tprime"] // We can peform the pass/(no pass) criterion at lower precision xsq1 = x^2 ex2 = e xsq1 ad = (-tprime - 3) / ex2 if ad < -log[e,2]/e { // Frink solver to calculate number of possibly correct digits: // Does not always solve specified term. Fix this. // https://frinklang.org/fsp/solve2.fsp?equations=xsq1+%3D+x%5E2%0D%0Aex2+%3D+e+xsq1%0D%0Aad+%3D+%28-tprime+-+3%29+%2F+ex2%0D%0Aad+%3D+-log%5Be%2C2%5D%2Fe%0D%0Adigits+%3D+tprime+%2F+log%5B10%2C2%5D%0D%0A&solveFor=&f=m&ev=on&sel_ad=S&val_ad=27%2F312500000000000+s&sel_digits=S&val_digits=&sel_e=L&val_e=2.71828182845904523536&sel_ex2=S&val_ex2=&sel_tprime=S&val_tprime=&sel_x=L&val_x=5.1&sel_xsq1=S&val_xsq1=&resultAs=&solved=on&showorig=on maybeDigits = floor[(xsq1 - ln[8])/ln[10]] println["arbitraryErfc cannot be used for x=$x and $digits digits. It may be accurate up to $maybeDigits digits for this value of x."] return undef } N0 = ceil[ex2 ad / log[-ad, 2]] if N0 <= xsq1 N = N0 else { n1part = xsq1/ex2 if n1part log[n1part, 2] <= ad N = ceil[xsq1] else { println["arbitraryErfc cannot be used for $x and $digits digits (final test)"] return undef } } // Recipe 6 workprec = ceil[(tprime + 9 + ceil[log[N,2]]) / log[10,2]] + digitLength[x] if debug println["workprec is $workprec"] try { setPrecision[workprec] E = floor[log[x,2]] xsq = x*x // x^2 G = ceil[xsq log[e,2]] acc = xsq y = 1 / (2 acc) acc = arbitraryExp[-acc, workprec] tmp = x * sqrt[Pi.getPi[workprec], workprec] acc = acc / tmp F = floor[log[abs[y],2]] if debug println["N is $N"] L = ceil[sqrt[N]] + 1 // Not sure from the paper what L should be! // L = floor[xsq - 1/2] // L = 2 N // L = 2N-1 if debug println["L is $L"] z = arbitraryPow[y, L, workprec] S = new array[[L+1], 0] i = 0 k = 0 do { S@i = S@i + (-1)^k acc k = k+1 if i == L - 1 { i = 0 acc = acc * z } else i = i + 1 acc = acc * (2 k - 1) } until k == N or floor[log[acc,2]] < -tprime - 3 - F i - G - E // Now evaluate by Horner's rule R = S@(L-1) for i = L-2 to 0 step -1 R = R y + S@i setPrecision[digits] return 1. R } finally { setPrecision[origPrec] } } /** Arbitrary-precision phi function. This is the cumulative distribution function for the normal/Gaussian distribution with a mean of 0 and sd of 1. Calculate the probability (from 0 to 1) of a score *less than or equal to* z in a normally-distributed distribution with the given mean and standard deviation. */ arbitraryPhi[z, digits=getPrecision[]] := { origPrec = getPrecision[] workPrec = digits + 3 try { setPrecision[workPrec] phi = 1/2 (1 + arbitraryErf[z / sqrt[2, workPrec], workPrec]) setPrecision[digits] return 1.0 phi } finally { setPrecision[origPrec] } } /** Arbitrary-precision phi function. This is the cumulative distribution function for the normal/Gaussian distribution. Calculate the probability (from 0 to 1) of a score *less than or equal to* x in a normally-distributed distribution with the given mean and standard deviation. For example, to find the percentile score of an IQ of 130, given the assumption that IQ has mean of 100 and sd of 15, use: arbitraryPhi[130, 100, 15] which gives 0.977, or the 97.7th percentile. */ arbitraryPhi[x, mean, sd, digits=getPrecision[]] := { origPrec = getPrecision[] workPrec = digits + 3 try { setPrecision[workPrec] z = (x - mean) / sd // Convert to "z-score" phi = arbitraryPhi[z, digits] setPrecision[digits] return 1.0 phi } finally { setPrecision[origPrec] } } "ArbitraryPrecision included OK" /* digits = 1 setPrecision[digits] pi = Pi.getPi[digits] num = pi/4 collapseIntervals[false] inum = new interval[num, num, num] println[arbitrarySin[num,digits]] println[arbitrarySin[-num,digits]] println[sin[num]] println[sin[inum]] println[] println[arbitraryCos[num,digits]] //println[arbitraryCosAround2Pi[num,digits]] println[arbitraryCos[-num,digits]] println[cos[num]] println[cos[inum]] println[] println[arbitraryTan[num,digits]] println[arbitraryTan[-num,digits]] println[tan[num]] println[tan[-num]] println[tan[inum]] setPrecision[2] g = new graphics ps = new polyline pc = new polyline for x=-20 pi to 20 pi step .1 { ps.addPoint[x,-arbitrarySin[x]] pc.addPoint[x,-arbitraryCos[x]] } g.add[ps] g.color[0,0,1] g.add[pc] g.show[] */