use Solver.frink // Solver for "Emily's Fourth Hour" geocache, GC1K3YW // http://www.geocaching.com/seek/cache_details.aspx?guid=a90aef91-3fb2-495a-99d3-0414f1678a13 symbolicMode[true] showApproximations[false] ballistics = new Solver[[p0 === 17 g vwx, p1 === 17 g 41.9412 m/s + 1.9 kg * 3.68684 m/s, p2 === 1.9 kg * 3.68684 m/s + 2.3 kg * yz, p0 === p1, p1 === p2], ["g", "m", "s", "kg"]] println["Ballistics:"] println[join["\n", ballistics.solveAll[]]] println[] args = [] vwx = format[ballistics.solveFor["vwx",args]@0, "m/s", 0] println["vwx = $vwx"] v = substrLen[vwx, 0, 1] w = substrLen[vwx, 1, 1] x = substrLen[vwx, 2, 1] yz = format[ballistics.solveFor["yz",args]@0, "m/s", 3] println["yz = $yz"] y = substrLen[yz, 2, 1] z = substrLen[yz, 3, 1] println["vw.xyz = 111 degrees $v$w.$x$y$z minutes W"] // First part can be solved at // https://frinklang.org/fsp/solve.fsp?eq=D%5B3.81t%5E3+%2B+9.882t%5E2+%2B+18.6497t+%2B+53.8946%2Ct%2C3%5D&solveFor=t println["33 degrees 22.860 minutes N"] //println[]