/** This program demonstrates the use of the country polygons in Country.frink to draw a map of the world. It can be readily altered to draw the map in your favorite projection. */ use Country.frink use geometry.frink use navigation.frink g = new graphics g.stroke[3] g.color[.8,.9,1] g.fillEllipseCenter[0, 0, 2 pi earthradius / km , 2 pi earthradius / km] myLat = 40 degrees North myLong = 105 degrees West //myLat = 20.57 degrees South // Tonga volcano //myLong = 175.38 degrees West //myLat = 41.29036 degrees South // Wellington, New Zealand //myLong = 174.78222 degrees East // Iterate through all countries. for [code, country] = Country.getCountryList[] { cc = new color[randomFloat[.2,.9], randomFloat[.2,.9], randomFloat[.2,.9], .8] firstPolygon = true for poly = country.borders // Iterate through polygons in a country. { p = new filledPolygon // This polygon is the filled country po = new polygon // This is the outline of the country // Some countries consist of many polygons. Only label the first one // (which is sorted in Country.frink to be the largest.) if firstPolygon { transformedPolygon = new array untransformedPolygon = new array } for [long, lat] = poly // Iterate through points in polygon { [x,y] = latLongToXY[myLat, myLong, lat degree, long degree] p.addPoint[x, y] po.addPoint[x, y] if firstPolygon { transformedPolygon.push[[x,y]] untransformedPolygon.push[[lat, long]] } } // Draw filled countries g.color[cc] g.add[p] // Draw country outlines g.color[0.2,0.2,0.2,.8] g.add[po] // Draw country names. // This now centers names in the nontransformed polygons. if firstPolygon { area = polygonArea[transformedPolygon] [cxu, cyu] = polygonCentroid[untransformedPolygon] [cx, cy] = latLongToXY[myLat, myLong, cxu degree, cyu degree] g.color[0,0,0] // Do some contortions to try and size the country name longestWord = max[map[getFunction["length",1], split[%r/\s+/, country.name]]] countryName = country.name =~ %s/\s+/\n/g // Wrap country name g.font["SansSerif", "bold", 6 (sqrt[area] / longestWord)^(0.7)] g.text[countryName, cx, cy, arctan[cx,cy] + 180 deg] firstPolygon = false } } } // Draw distance circles g.stroke[6] g.color[0,0,0] for distance = 0 km to pi earthradius step 1000 miles g.drawEllipseCenter[0, 0, 2 distance / km, 2 distance / km] // Draw bearing lines g.font["SansSerif", "bold", 600] for bearing = 0 degrees to 359 degrees step 10 degrees { x = pi earthradius sin[bearing] / km y = -pi earthradius cos[bearing] / km g.line[0, 0, x, y] g.text[round[bearing/deg] /* + "\u00B0"*/, x , y, "center", "baseline", -bearing] } g.stroke[18] // Draw single degree ticks for bearing = 0 to 359 { x1 = pi earthradius sin[bearing degrees] / km y1 = -pi earthradius cos[bearing degrees] / km x2 = 12000 miles sin[bearing degrees] / km y2 = -12000 miles cos[bearing degrees] / km g.line[x1, y1, x2, y2] } g.show[1] g.write["greatCircle.svg", 1000, 1000] g.write["greatCircle.png", 1000, 1000] latLongToXY[myLat, myLong, lat, long] := { [distance, bearing] = earthDistanceAndBearing[myLat, myLong, lat, long] d1 = distance / km y = -d1 cos[bearing] x = d1 sin[bearing] return [x,y] }