/** This program contains routines to process, integrate, graph, and curve-fit data for inertial navigation. */ use Grid.frink use LeastSquares.frink headerRows = 2 timestep = 0.5 s grid = new array for line = readLines["file:inertialdata01.txt.csv"] { line = split["\t",line] grid.push[line] } ax = mulvec[eval[rest[grid.getColumn[8], headerRows]], m/s^2] ay = mulvec[eval[rest[grid.getColumn[9], headerRows]], m/s^2] az = mulvec[eval[rest[grid.getColumn[10], headerRows]],m/s^2] vx = sumAccel[ax, timestep] vy = sumAccel[ay, timestep] vz = sumAccel[az, timestep] dx = sumVelocity[vx, timestep] dy = sumVelocity[vy, timestep] dz = sumVelocity[vz, timestep] xvalues = makeTimes[dx, timestep, 0 s] basisFuncs = noEval[[x]] ls = new LeastSquares[zip[xvalues, vy], basisFuncs] println[ls.toMatrix[].formatMatrix[]] println[ls.toExpressionString["t"]] println["Residual: " + ls.residual[]] println["r-value: " + ls.rValue[]] fitfunc = ls.toFunction[] lsdy = new LeastSquares[zip[xvalues, dy], noEval[[x^2, x]]] //graphVel[vx, timestep, "x"] graphVel[vy, timestep, fitfunc] graphDist[dx, timestep] graphDist[dy, timestep, lsdy.toFunction[]] graphVel[c, timestep, func=undef] := { g = new graphics t0 = 0 s p = new polyline pp = new polyline for i = rangeOf[c] { t = i*timestep p.addPoint[t, -(c@i)] if func != undef pp.addPoint[t, -func[t]] } g.add[p] g.color[0,0,1,.5] g.add[pp] g.color[0,0,0] grid = new Grid grid.setUnits[s, -m/s] grid.auto[g] g.add[grid.getGrid[]] g.show[] } graphDist[c, timestep, func = undef] := { g = new graphics t0 = 0 s p = new polyline pp = new polyline for i = rangeOf[c] { t = i*timestep d = c@i / m p.addPoint[t, -d] if func != undef pp.addPoint[t, -func[t]/m] } g.add[p] g.color[0,0,1,.5] g.add[pp] g.color[0,0,0,.5] grid = new Grid grid.setUnits[s, -1] grid.auto[g] g.add[grid.getGrid[]] g.show[] } sumAccel[a, timestep, v0 = 0 m/s] := { lastV = v0 ret = new array for i = rangeOf[a] { lastV = lastV + timestep * a@i ret.push[lastV] } return ret } sumVelocity[v, timestep, d0 = 0 m] := { lastD = d0 ret = new array for i = rangeOf[v] { lastD = lastD + timestep * v@i ret.push[lastD] } return ret } mulvec[vec, scalar] := { ret = new array for i = rangeOf[vec] { v = vec@i if isUnit[v] ret.push[vec@i * scalar] } return ret } makeTimes[vec, timestep, t0] := { lastT = t0 ret = new array for i = rangeOf[vec] { lastT = lastT + timestep ret.push[lastT] } return ret } /** Function to turn a spreadsheet column designator into a column index. For example, this turns column name "A" to 0 and column name "Z" to 25 and column name "AA" to 26. */ ssColumnToIndex[name] := { name = uc[trim[name]] ret = 0 len = length[name] pow = 1 for i = len-1 to 0 step -1 { ret = ret + (char[substrLen[name, i, 1]] - char["A"] + 1) * pow pow = pow * 26 } return ret-1 // We want zero-based column number. }