Download or view FourierUtils.frink in plain text format
/** This file contains utilities for working with Fourier transforms, including
plotting the transform and figuring out what frequency components a
specific element of the Fourier transform represents. */
/** These functions are intended to help you figure out what frequency or
period each component in the Fourier transform corresponds to. */
/** Calculate the frequency of the specified index given:
[ft, totalPeriod, index]
where:
ft: the transformed sequence
totalPeriod: the total period of the initial sequence (e.g. 1 year)
index: the index for which we want to calculate the index.
Note that this gives the frequency. If you want the *angular* frequency
(omega) such as to pass to a sin or cos function, you need to multiply this
frequency by 2 pi.
*/
frequencyFromTotalPeriod[ft, totalPeriod, index] :=
{
if index == 0 // DC component
return 0 * 1/totalPeriod // Get the units right?
return 1/periodFromTotalPeriod[ft, totalPeriod, index]
}
/** Calculate the period of the specified index given:
[ft, totalPeriod, index]
where:
ft: the transformed sequence
totalPeriod: the total period of the initial sequence (e.g. 1 year)
index: the index for which we want to calculate the index.
*/
periodFromTotalPeriod[ft, totalPeriod, index] :=
{
N = length[ft]
if index == 0 // Period is infinite.
return undef
if index <= N/2
return totalPeriod / index
else
return -totalPeriod / (N - index)
}
/** Calculate the period of the specified index given:
[ft, samplePeriod, index]
where:
ft: the transformed sequence
samplePeriod: the period of a single sample (e.g. 10 ms)
index: the index for which we want to calculate the index.
*/
periodFromSamplePeriod[ft, samplePeriod, index] :=
{
N = length[ft]
totalPeriod = samplePeriod * N // Is this valid with padded FFTs?
println["totalPeriod is $totalPeriod, samplePeriod is $samplePeriod"]
return periodFromTotalPeriod[ft, totalPeriod, index]
}
/** Calculate the frequency of the specified index given:
[ft, samplePeriod, index]
where:
ft: the transformed sequence
samplePeriod: the period of each sample (e.g. 10 ms)
index: the index for which we want to calculate the index.
Note that this gives the frequency. If you want the *angular* frequency
(omega) such as to pass to a sin or cos function, you need to multiply this
frequency by 2 pi.
*/
frequencyFromSamplePeriod[ft, samplePeriod, index] :=
{
if index == 0 // DC component
return 0 * 1/samplePeriod // Get the units right?
println["length[ft] is " + length[ft]]
return 1/periodFromSamplePeriod[ft, samplePeriod, index]
}
/** Plots a Fourier Transform as a magnitude-phase diagram. */
plotFourier[ft, showDC=true, centered=true, realOnly=false] :=
{
N = length[ft]
g = new graphics
start = 0
if showDC==false
start = 1
end = N-1
if realOnly
end = N div 2
offset = 0
modulus = N
if centered
offset = N div 2
dc = abs[ft@0]
if dc == 0
dc = 1
for i = start to end
{
v = ft@i
mag = abs[v]
if realOnly
arg = 0 // Real transform has complex conjugates at i and N-i
else
arg = arctan[Im[v], Re[v]]
x = (i+offset) mod modulus
transparency = clamp[mag/dc, 0 , 1]^(1/4)
// println["mag = $mag, dc = $dc, transparency = $transparency"]
g.color[0, 1, 0, transparency]
g.fillRectSides[x-1/2, -arg, x+1/2, 0]
g.color[0, 0, 0, .7]
g.fillRectSides[x-1/2, -Re[mag], x+1/2, 0]
}
return g
}
/** Adds a sinewave to the specified array. If the array is undef, this
creates a new array and returns it.
TODO: Specify phase?
*/
addSinewaveRaw[f, amplitude, startIndex, endIndex, array=undef] :=
{
if array == undef
array = new array[[endIndex+1],0]
len = endIndex-startIndex
for k=0 to len
{
prev = array@(k+startIndex)
if prev == undef
prev = 0
array@(k+startIndex) = prev + amplitude sin[2 pi f k]
}
return array
}
Download or view FourierUtils.frink in plain text format
This is a program written in the programming language Frink.
For more information, view the Frink
Documentation or see More Sample Frink Programs.
Alan Eliasen was born 20218 days, 0 hours, 24 minutes ago.